Case Study

Optimization of the kinetics of siRNA desorption from the surface of silicon nanoparticles

Anzhelika Melnikova*, Roman Kirkin and Luidmila Komarova

Published: 02 March, 2023 | Volume 7 - Issue 1 | Pages: 020-023

Oncological diseases are one of the most significant medical and social diseases in most countries of the world. Over the past decades, the search and development of new drugs, treatment regimens and methods of molecular diagnostics of malignant neoplasms remains relevant. In turn, an important goal of molecular genetic research is to suppress the expression of genes responsible for the development of tumors. The key targets taken into account in the development of antitumor drugs are proteins involved in carcinogenic changes in the cell. One of the promising molecular targets for the development of medicinal compounds in targeted therapy of tumor diseases is poly(ADP-ribose)polymerase 1 (PARP1). A potential way to inhibit PARP1 even at the stage of protein translation is RNA interference due to small interfering RNAs (siRNAs). For the penetration of siRNAs into the target cell, it is necessary to develop a method of their transportation controlled in space and time. An actual direction for solving this problem is the use of highly stable porous silicon-based nanoparticles. In the current study, in order to increase the functionality of nanoparticles, their surface was modified with various agents (functionalization), providing increased efficiency of drug loading and more uniform release. 

Read Full Article HTML DOI: 10.29328/journal.abse.1001021 Cite this Article Read Full Article PDF


Silicon nanoparticles; PARP1; RNA interference; siRNA


  1. Ludwig A, Behnke B, Holtlund J, Hilz H. Immunoquantitation and size determination of intrinsic poly(ADP-ribose) polymerase from acid precipitates. An analysis of the in vivo status in mammalian species and in lower eukaryotes. J Biol Chem. 1988 May 25;263(15):6993-9. PMID: 3130376.
  2. Yamanaka H, Penning CA, Willis EH, Wasson DB, Carson DA. Characterization of human poly(ADP-ribose) polymerase with autoantibodies. J Biol Chem. 1988 Mar 15;263(8):3879-83. PMID: 3126180.
  3. Gibson BA, Kraus WL. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol. 2012 Jun 20;13(7):411-24. doi: 10.1038/nrm3376. PMID: 22713970.
  4. De Lorenzo SB, Patel AG, Hurley RM, Kaufmann SH. The Elephant and the Blind Men: Making Sense of PARP Inhibitors in Homologous Recombination Deficient Tumor Cells. Front Oncol. 2013 Sep 11;3:228. doi: 10.3389/fonc.2013.00228. PMID: 24062981; PMCID: PMC3769628.
  5. Thomas C, Tulin AV. Poly-ADP-ribose polymerase: machinery for nuclear processes. Mol Aspects Med. 2013 Dec;34(6):1124-37. doi: 10.1016/j.mam.2013.04.001. Epub 2013 Apr 25. PMID: 23624145; PMCID: PMC3750069.
  6. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000 Mar 16;404(6775):293-6. doi: 10.1038/35005107. PMID: 10749213.
  7. Rao W, Wang H, Han J, Zhao S, Dumbleton J, Agarwal P, Zhang W, Zhao G, Yu J, Zynger DL, Lu X, He X. Chitosan-Decorated Doxorubicin-Encapsulated Nanoparticle Targets and Eliminates Tumor Reinitiating Cancer Stem-like Cells. ACS Nano. 2015 Jun 23;9(6):5725-40. doi: 10.1021/nn506928p. Epub 2015 May 29. PMID: 26004286.
  8. Min Y, Caster JM, Eblan MJ, Wang AZ. Clinical Translation of Nanomedicine. Chem Rev. 2015 Oct 14;115(19):11147-90. doi: 10.1021/acs.chemrev.5b00116. Epub 2015 Jun 19. PMID: 26088284; PMCID: PMC4607605.
  9. Joo J, Kwon EJ, Kang J, Skalak M, Anglin EJ, Mann AP, Ruoslahti E, Bhatia SN, Sailor MJ. Porous silicon-graphene oxide core-shell nanoparticles for targeted delivery of siRNA to the injured brain. Nanoscale Horiz. 2016 Sep 1;1(5):407-414. doi: 10.1039/C6NH00082G. Epub 2016 Jun 14. PMID: 29732165; PMCID: PMC5935492.
  10. Gowda R, Jones NR, Banerjee S, Robertson GP. Use of Nanotechnology to Develop Multi-Drug Inhibitors For Cancer Therapy. J Nanomed Nanotechnol. 2013 Dec;4(6):184. doi: 10.4172/2157-7439.1000184. PMID: 25013742; PMCID: PMC4085796.
  11. Cheng YJ, Luo GF, Zhu JY, Xu XD, Zeng X, Cheng DB, Li YM, Wu Y, Zhang XZ, Zhuo RX, He F. Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles. ACS Appl Mater Interfaces. 2015 May 6;7(17):9078-87. doi: 10.1021/acsami.5b00752. Epub 2015 Apr 24. PMID: 25893819.
  12. Lerner MI, Glazkova EA, Lozhkomoev AS, Svarovskaya NV, Bakina OV, Pervikov AV, Psakhie SG. Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen. Powder Technology. 2016; 295: 307–314.
  13. Ramani M, Ponnusamy S, Muthamizhchelvan C, Marsili E. Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity. Colloids Surf B Biointerfaces. 2014 May 1;117:233-9. doi: 10.1016/j.colsurfb.2014.02.017. Epub 2014 Mar 4. PMID: 24657608.
  14. Alarifi S, Ali D, Alkahtani S. Nanoalumina induces apoptosis by impairing antioxidant enzyme systems in human hepatocarcinoma cells. Int J Nanomedicine. 2015 May 25;10:3751-60. doi: 10.2147/IJN.S82050. PMID: 26045665; PMCID: PMC4448921.
  15. Mikhaylov G, Mikac U, Magaeva AA, Itin VI, Naiden EP, Psakhye I, Babes L, Reinheckel T, Peters C, Zeiser R, Bogyo M, Turk V, Psakhye SG, Turk B, Vasiljeva O. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotechnol. 2011 Aug 7;6(9):594-602. doi: 10.1038/nnano.2011.112. PMID: 21822252.
  16. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S. Size-Dependent Endocytosis of Nanoparticles. Adv Mater. 2009;21:419-424. doi: 10.1002/adma.200801393. PMID: 19606281; PMCID: PMC2709876.
  17. Zhang M, Xu R, Xia X, Yang Y, Gu J, Qin G, Liu X, Ferrari M, Shen H. Polycation-functionalized nanoporous silicon particles for gene silencing on breast cancer cells. Biomaterials. 2014 Jan;35(1):423-31. doi: 10.1016/j.biomaterials.2013.09.033. Epub 2013 Oct 5. PMID: 24103653; PMCID: PMC3842233.
  18. Korovin MS, Bakina OV, Fomenko AN, Lerner MI. Assessment of cytotoxic effect of low-dimensional aluminum oxide structures on tumor cells. Siberian journal of oncology. 2016; 15(6): 35-41.
  19. Wan Y, Apostolou S, Dronov R, Kuss B, Voelcker NH. Cancer-targeting siRNA delivery from porous silicon nanoparticles. Nanomedicine (Lond). 2014 Oct;9(15):2309-21. doi: 10.2217/nnm.14.12. Epub 2014 Mar 5. PMID: 24593001.
  20. Tong WY, Alnakhli M, Bhardwaj R, Apostolou S, Sinha S, Fraser C, Kuchel T, Kuss B, Voelcker NH. Delivery of siRNA in vitro and in vivo using PEI-capped porous silicon nanoparticles to silence MRP1 and inhibit proliferation in glioblastoma. J Nanobiotechnology. 2018 Apr 13;16(1):38. doi: 10.1186/s12951-018-0365-y. PMID: 29653579; PMCID: PMC5898074.


Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?