Retrospective Study
Published: 09 July, 2024 | Volume 8 - Issue 1 | Pages: 032-038
Introduction: Pneumothorax is a life-threatening condition that requires prompt recognition and therapy to prevent deterioration. Radiologist workload often precludes rapid assessment of the usual diagnostic modality, the chest radiograph, particularly after hours. The aim was to develop a deep learning model using a segmentation-based Deep Convolutional Neural Network (DCNN) to detect pneumothorax on chest radiographs to provide rapid and accurate pneumothorax diagnosis.
Methods: This is a retrospective study of spontaneous pneumothorax at a single center, containing 130 positive and 70 negative radiographs. Subsequent manual contour mapping was performed to draw a mask of the pneumothorax. These image pairs were used to train a DCNN model (a modified AlexNet) after pretraining on the ImageNet dataset.
Results: The DCNN achieved an accuracy of 0.83, with sensitivity of 98.1%, and specificity of 68.5%.
Conclusion: This segmentation-based DCNN accuracy is comparable to previous categorization-based CDNN models, despite using a smaller sample size for training, while including the benefits of visual representation for clinician feedback. Segmentation-based DCNNs show promise in the development of accurate and clinically useful models for medical imaging.
Read Full Article HTML DOI: 10.29328/journal.abse.1001031 Cite this Article Read Full Article PDF
Radiology; Deep learning; Deep convolutional neural network; Pneumothorax; Radiograph; Segmentation
HSPI: We're glad you're here. Please click "create a new Query" if you are a new visitor to our website and need further information from us.
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."