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Abstract 

Advances in metagenomics have facilitated population studies of associations between 
microbial compositions and host properties, but strategies to minimize biases in these 
population analyses are needed. However, the eff ects of storage conditions, including freezing 
and preservation buff er, on microbial populations in fecal samples have not been studied 
suffi  ciently. In this study, we investigated metagenomic diff erences between fecal samples 
stored in diff erent conditions. We collected 46 fecal samples from patients with lung cancer. DNA 
quality and microbial composition within diff erent storage method were compared throughout 
16S rRNA sequencing and post analysis. DNA quality and sequencing results for two storage 
conditions (freezing and preservation in buff er) did not diff er signifi cantly, whereas microbial 
information was better preserved in buff er than by freezing. In a metagenomic analysis, we 
observed that the microbial compositional distance was small within the same storage condition. 
Taxonomic annotation revealed that many microbes diff ered in abundance between frozen and 
buff er-preserved feces. In particular, the abundances of Firmicutes and Bacteroidetes varied 
depending on storage conditions. Microbes belonging to these phyla diff ered, resulting in biases 
in population metagenomic analysis. We suggest that a unifi ed storage method is requisite for 
accurate population metagenomic studies.

Introduction
Associations of gut microbes with human health are 

gradually becoming clear. There is compelling evidence 
for effects of gut microbes on various biological processes, 
including metabolism, brain function, digestion, nutrient 
storage, and immunity [1]. To analyze microbial function 
efϐiciently and accuracy, next-generation sequencing tools for 
metagenomic analyses have been developed [2]. Population 
metagenomic studies are important in terms of validation 
and minimizing selecting bias. Many population metagenomic 
studies have revealed associations between the microbial 
composition and host properties in the context of medicines, 
location, metabolic features, and disease [3-5]. However, 
unexpected bias can occur when ununiϐied tools, experimental 
kits, and storage conditions are used. 

Fecal storage is an important step for credible and 
accurate metagenomic analyses because microbes and 
their DNA/RNA are sensitive to the external environment, 
including oxygen and temperature [6-10]. Sequencing of the 
16S rRNA region is a common method for investigating the 
gut microbial composition by mapping to reference sequences 
[3,11]. Unstable storage of fecal samples can damage 
microbial information (DNA and RNA) and induce errors in 
sequence data and metagenomic analyses [12]. To prevent 
these alterations and to ensure the accuracy of metagenomic 
analyses, feces should be preserved intact [13,14]. Storage at 
-80 °C or in liquid nitrogen is a common method for preventing 
degradation and changes in the microbial composition 
[15,16]. Fecal samples are often obtained from many sites, 
and researchers may have issues with storage at extremely 
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low temperatures. Various tools, such as DNA/RNA shields, 
have been developed to maintain the original condition of 
feces [15,17,18]. However, the effects of different fecal storage 
conditions on the same microbial population are unclear.

In this study, we investigated differences in metagenomic 
results for feces obtained from the same population stored 
under different conditions. We compared fecal samples stored 
at -20 °C followed by -80 °C and those stored in preservation 
buffer (DNA/RNA Shield) at 4 °C. We analyzed the quality of 
extracted DNA, sequencing results, diversity, and taxonomic 
distributions to determine the effects of fecal storage 
conditions. We found that different storage methods gave rise 
to different microbial compositions, despite obtaining feces 
from the same population. Thus, we suggest that researchers 
use a single storage method for consistent and accurate results 
of metagenomic analyses.

Methods
Fecal sample collection, storage conditions, and DNA 
extraction 

Fresh feces were collected from 46 patients with lung 
cancer. Twenty-two fecal samples were immediately stored 
at -20 °C and transported to a deep freezer at -80 °C until 
use. Twenty-four fecal samples were immediately stored in 
preservation buffer (Zymo, Irvine, CA, USA) at 4 °C for 1 year 
until use. DNA extraction was performed using 500 mg of 
feces per sample using the FastDNA® SPIN Kit for Soil (MP 
Biomedicals, Solon, CA, USA) & PowerFecal DNA Isolation Kit 
(MO BIO, Hilden, Germany) according to the manufacturer’s 
recommendations. DNA purity and quantity were estimated 
using a NanoDrop One Spectrophotometer (Thermo Scientiϐic, 
Waltham, MA, USA).

Metagenomic 16S rRNA sequencing data analysis 

The quality of raw sequence reads was analyzed using 
FastQC [19]. Illumina adapter sequences of paired-end reads 
were removed using cutadapt version 2.2 [20]. Then, trimmed 
sequences were processed using QIIME2 version 2019.4 
[21]. Brieϐly, reads were assigned to each sample according 
to the unique index; pairs of reads from the original DNA 
fragments were merged using an import tool in QIIME2. 
To remove chimeras from the fastq ϐiles, the consensus 
method implemented in DADA2 was used. Alpha diversity 
was evaluated using the q2-diversity plugin in QIIME2 by 
rarefaction. Statistical analyses of alpha diversity indices were 
performed using non-parametric tests. Taxonomic annotation 
was performed by mapping to the training reference set with 
primers (forward, 5′-CCTACGGGNGGCWGCAG-3′; reverse, 
5′-GACTACHVGGGTATCTAATCC-3′) for extracting the 
V3–V4 region using GreenGenes version 13_8 [21]. Linear 
discriminant effect size analysis (LEfSe) [22] was performed 
to identify differential features at the species level between 
groups base on linear discriminant analysis (LDA) scores. 

Statistical plots and calculations were generated using R and 
R studio [23] with the ggplot2 package [24].

Results
To demonstrate the association between fecal storage 

conditions and population structure inferred from 
metagenomic analyses, 46 fecal samples were collected from 
one population of patients with lung cancer (Table S1). 22 
fecal samples were stored at -20 °C for more than 12 months 
and then transported to -80 °C (frozen feces). The other 24 
fecal samples were stored in preservation buffer (buffer-
preserved feces). These 46 fecal samples were then lysed for 
DNA extraction and sequenced for analysis (Figure 1). Here, 
we analyzed the frozen feces for long duration at -20 °C and 
buffer-preserved feces mainly.

Quality comparison of frozen and buff er-preserved 
fecal samples at the DNA level

We compared the amount of extracted DNA from each 
stored fecal sample to determine the effects of different 
storage conditions. The concentration of DNA from buffer-
preserved feces was signiϐicantly higher than that from frozen 
feces (p < 0.005, Figure 2A). We  also conϐirm that there was 
no bias caused by impurities affecting the measurement of 
concentrations (Figure 2B). Despite different concentrations 
of extracted DNA, the V3–V4 region was successfully ampliϐied 
by polymerase chain reaction (PCR). To prevent bias from the 
sequencing procedure, we obtained sequence read counts 

Figure 1: Schematic diagram of the study for design comparisons among fecal storage 
methods. In total, 46 fecal samples were collected from patients with lung cancer. The 
24 fecal samples were stored in preservation buff er at 4 °C, 22 fecal samples were 
stored at -20 °C longer than 12 months and transported to -80 °C. All feces were used 
to obtain microbial DNA and then sequenced for metagenomic analyses.

Supplementary Table 1
Characteristics Type Frozen Shield p - value

Sex
Male 16 20

0.484
Female 6 4

Age Mean (SD) 67.32 (10.61) 65.83 (12.22) 0.662

Histology
Adenocarcinoma 17 17

0.497Squamous 4 7
Pleomorphic 1 0

Smoking
Current 8 9

0.406EX 8 12
Non 6 3

Drug-target
PD-1 17 20

0.718
PD-L1 5 4

Summary of clinical characteristics of lung cancer patients whose feces were split 
into frozen and buff er storages. Signifi cance of categorical characteristics was 
calculated by Fisher’s exact test. Signifi cance of age was calculated by Wilcoxon-
Mann-Whitney U test. EX is who used to smoking, not for nowadays. SD: Standard 
Deviation, PD-1: Programmed death-1, PD-L1: Programmed Death-Ligand 1.
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and veriϐied that there was no difference in counts between 
frozen and buffer-preserved fecal samples (Figure 2C). We 
trimmed adaptors, joined reads, and excluded chimeras and 
low quality-reads. The paired read count was higher for 
buffer-preserved feces than for frozen feces, indicating that 
microbial DNA was intact when stored in preservation buffer 
(p < 0.05, Figure 2D).

Microbial diversity based on microbial composition 
distances of feces stored under diff erent conditions

To investigate whether microbial states differed depending 
on storage conditions, we compared microbial diversity 
in frozen and buffer-preserved feces. We evaluated alpha 
diversity and observed that individual variation was greater 
than variation between frozen and buffer-preserved feces. In 
particular, species counts were signiϐicantly higher in buffer-
preserved feces than in frozen feces, but other alpha diversity 
indexes did not exhibit signiϐicant differences (Figure 3 
A-C). However, beta diversity showed scattered individuals 
dependent on the storage method (Figure 3 D, p = 0.001). 
We found that the phylogenetic distance (sequence distance) 
weighted by microbial abundance also split individuals into 
two groups (Figure 3D). Here, we discovered that frozen feces 
were coordinated with Firmicutes mainly when Bacteroidetes 
coordinated buffer-preserved feces. These microbial 
characteristic variations might be also affected by durations at 
-20 °C before transferred at -80 °C (Figure 3D). These results 
suggested that the different storage conditions induced 
variation in the microbial composition of a population.

Metagenomic analysis of the microbial composition of 
feces under diff erent storage conditions

Next, we performed taxonomic annotations of the microbes 
to detect differences between frozen and buffer-preserved 
fecal samples. We found that 6 phyla, 20 genera, and 15 
species differed signiϐicantly between storage conditions 
(Table S2). The top 6 taxa at each level by count number are 
summarized (Figure 4). At the phylum level, Firmicutes was 
more abundant in frozen feces and Bacteroidetes was more 
abundant in buffer-preserved feces (Figure 4A,B, Figure S1). 
Interestingly, the abundance of Bacteroidetes was very low 
in frozen feces, whereas Firmicutes was abundant in buffer-
preserved feces. Consequently, most genera (Figure 4C,D) 
and species (Figure 4E,F) included in these phyla differed 
signiϐicantly between frozen and buffer-preserved feces 
(Figure 4). Most results for species abundance were consistent 
with those for their corresponding phyla and genera. These 
results suggest that different fecal storage methods induce 
variation in the microbial composition of feces.

Discussion
In this study, we collected fecal samples from donors with 

lung cancer to investigate the effects of different storage 
conditions of the results of population metagenomic analyses. 
Here, we used a lung cancer cohort because it was readily 
available to us and lung cancer is not thought to be correlated 
with dramatical microbial changes unlike colon cancer, 
although recent studies have emphasized the association of 
microbiome with cancer [ 25-28]. Moreover, the previous 
studies of healthy human cohorts revealed that each person 
has a distinct gut microbiome signatures, thus microbiome 

Figure 2: Numbers of sequence reads and paired-end reads from feces stored in 
diff erent conditions. (a) Concentration (Conc) of DNA from fecal samples stored 
frozen and in preservation buff er (n = 22 and n = 24, respectively). (b) Ratio of 
absorbance at 260 to 280 as an indicated of purity. (c) Number of sequence reads 
for the V3–V4 region obtained by Illumina 16S rRNA sequencing. (d) Number of 
paired-end reads from feces. n.s.: non-signifi cant; **p < 0.005. Signifi cance was 
evaluated by the Wilcoxon-Mann-Whitney U test. Whiskers error bars represent 
the distribution of relative abundance.

Figure 3: Alpha diversity and beta diversity of individual feces stored under 
diff erent conditions. (a) Number of observed species, (b) evenness, and (c) 
Shannon index for frozen and buff er-preserved feces. (d) Weighted UniFrac beta 
diversity. Grey sentences are OTUs (Operational Taxonomic Units). n.s.: non-
signifi cant; *p < 0.05. Signifi cance was evaluated by the Wilcoxon-Mann-Whitney 
U test. Whiskers error bars represent the distribution of alpha diversity values. The 
signifi cance of diff erences in beta diversity was calculated by PERMANOVA with 
999 permutations.
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Figure 4: Diff erences in microbial abundances between frozen and buff er-preserved feces. Relative abundance of various microbes with diff erent 
abundances (a and b) at the phylum level, (c and d), genus level, and (e and f) species level. (g) A taxonomic cladogram and a plot of linear discriminant 
analysis (LDA) scores from linear discriminant analysis eff ect size (LEfSe) illustrating the microbes that diff er signifi cantly between frozen and buff er-
preserved feces (|LDA score| > 4.5). Each panel is ordered by the maximum relative abundance (a–f). *p < 0.05; ***p < 0.0005. Signifi cance was 
evaluated by the Wilcoxon-Mann-Whitney U test. Whiskers error bars represent the distribution of observed relative abundance.

Supplementary Table 2

Phylum p - value Frozen( )
Buff er Genus p-value Frozen( )

Buff er Species p - value Frozen( )
Buff er

Actinobacteria 3.19E-06 > Bifi dobacterium 3.55E-06 >
B. adolescentis 0.002435032 >

B. longum 0.005385121 >

Bacteroidetes 1.22E-07 <
Bacteroides 0.000484512 <

B. ovatus 0.020191891 <
B. plebeius 0.04109329 <
B. uniformis 0.007180944 <

Parabacteroides 0.003123641 < P. distasonis 0.000635814 <
Prevotella 0.013097259 < P. copri 0.057820223 <

Firmicutes 1.04E-07 >

Blautia 1.04E-07 > B. obeum 0.001660642 >
Lachnospira 1.18E-05 < - - -

Ruminococcus 6.15E-06 >
R. gnavus 9.67E-06 >
R. bromii 0.026121427 >

Dorea 2.14E-06 > D. formicigenerans 0.015119466 >
Faecalibacterium 0.000528379 < F. prausnitzii 0.000528379 <

Oscillospira 0.001195305 < - - -
SMB53 0.000339951 > - - -

Streptococcus 0.000458297 > - - -
Coprococcus 0.000283426 > C. catus 0.017942251 >
Lactobacillus 0.005014775 > L. ruminis 0.01664354 >

Bacillus 0.011836243 > - - -
Dialister 0.042317988 > - - -

Weissella 0.047639457 > - - -
Lentisphaerae 0.002763407 < Victivallis 0.033440164 < V. vadensis 0.033440164 <

Proteobacteria 0.032208327 <
Bilophila 0.035402977 < - - -
Sutterella 3.42E-07 < - - -

Euryarchaeota 0.109019463 > - - - - - -
Microbial taxa with diff erences in abundance between frozen and buff er-preserved feces. Metagenomic annotation revealed microbes with diff erences in abundance at the 
phylum, genus, and species levels. Signifi cance was evaluated by the Wilcoxon-Mann-Whitney U test. The > symbol indicates which storage condition had a larger mean 
relative abundance. Unclassifi ed microbes are marked with the - sign.
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of healthy human population shows relatively broader range 
of bacterial diversity [29-32]. Feces were stored frozen at 
-80 °C and in preservation buffer. We found that differences 
in fecal storage induced compositional differences of the gut 
microbial community and caused inter-population variation. 
In particular, we that differences in the abundance of the main 
phyla that  Firmicutes and Bacteroidetes were major factor 
splitting the population into two microbial communities. Most 
genera and species with differences in abundance belonged 
to Firmicutes and Bacteroidetes, but other phyla also 
differed in abundance between frozen and buffer-preserved 
feces. Overall, our results suggest that credible and accurate 
population metagenomic analyses without bias require the use 
of a single storage method and highly controlled conditions.

Differences in DNA extraction kits, sequencing platforms, 
and analysis tools can cause further bias and variation in the 
results of metagenomic analyses. Accordingly, a consistent 
experimental method is essential [2,7,8,17]. For example, 
we sequenced the 16S rRNA region using the Illumina MiSeq 
platform targeting the V3–V4 region and mapped sequence 
reads to the GreenGenes database [3,33,34]. We obtained 
sequence reads for each sample with no differences in read 
counts between the two storage conditions. To join the 
sequence reads and ϐilter low-quality reads, DADA2 was 
used through QIIME2, which is a fast and accurate tool for 
metagenomic analyses [21,35,36]. We observed a difference 
in the number of paired-end reads, suggesting that different 
storage conditions could yield different microbial information.

The Shannon index is usually used to evaluate alpha 
diversity, accounting for abundance and evenness [37]. In this 
study, we found that evenness in frozen feces tended to higher 
than that in buffer-preserved feces. We conjectured that this 
difference reduced the gap in the Shannon index, despite the 
huge difference with respect to species. The opposite result was 
obtained by Menke et al., who revealed that alpha diversity is 
higher in frozen feces than buffer-preserved feces in sheep [38]. 

This difference may be explained by different characteristics 
between humans and sheep microbiota  composition [39,40]. 
Variation in alpha diversity among individual donors is 
often observed and can be explained by diet, lifestyle, and 
genetic factors [41-43]. These characteristics supersedes the 
individual variation in alpha diversity. To compare microbial 
diversity between populations, we plotted individuals based 
on weighted UniFrac distances. Even though donors had a 
broad range of alpha diversity values, beta diversity showed 
that the microbial distance depended on storage methods. 
This result suggested that the storage method may inϐluence 
the microbial composition in feces.

In the present study, we identiϐied taxa to determine 
speciϐic microbes that differed between frozen feces and 
buffer-preserved feces. Consistent with previous ϐindings 
[44,45], we observed that Firmicutes was more abundant 
in frozen feces than in buffer-preserved feces, while 
Bacteroidetes was more abundant in buffer-preserved feces. 
Importantly, the amount of Bacteroidetes was low in frozen 
feces, even though Bacteroidetes are known to inhabit 
the gastrointestinal tract of humans [45,46]. This  could 
be explained by the different type of cell walls between 
Firmicutes and Bacteroidetes. Faecalibacterium was more 
abundant in buffer-preserved feces than in frozen samples 
by up to 4-fold. This increase in Faecalibacterium was also 
observed in other studies using alternative buffers [6]. As 
Firmicutes increased, downstream genera and species also 
increased in frozen feces. Lentisphaerae and Fusobacteria are 
normally detected in feces at low abundances [47,48], but the 
relative abundance were zero in frozen feces and were low in 
buffer-preserved feces. These differences in some microbial 
taxa may give result in biases and unbalanced metagenomic 
analyses.

This study had some limitations. First, comparisons of the 
same fecal sample using different storage methods to evaluate 
intra-sample variation were not performed. However, we 
collected feces from donors within the same type (patients 
with lung cancer), providing homogenization and sufϐiciently 
superseding intra-individual comparisons. Second, only one 
type of preservation buffer was used for the comparative 
analysis. Comparisons among various preservation buffers 
should be a focus of further studies. In fact, many studies have 
compared various buffers [6,15,18,49], but the reproducibility 
of results should be established. Finally, further studies are 
needed to demonstrate inter-individual variation with respect 
to fecal storage conditions, using fecal samples collected from 
other populations to establish the generalizability of our 
ϐindings.
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