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Introduction
The eye, with its intricate anatomy and physiology, 

assumes a pivotal role in human life. However, its vital 
importance has necessitated the development of protective 
barriers, ranging from static membranes to dynamic vascular 
defenses. While these barriers proϐiciently shield the eye 
from external stressors and contaminants, they concurrently 
impede internal disease treatment. Numerous treatments 
for irreversible vision impairments necessitate targeted 
action within the ocular site, encompassing conditions like 
conjunctivitis, glaucoma, diabetic retinopathy, uveitis, edema, 
Retinitis Pigmentosa (RP), and Retinal Vein Occlusion (RVO). 
The prospects of nanotechnology and smart materials have 

spurred researchers to explore highly effective and minimally 
invasive carriers for ocular drug delivery [1,2]. In the realm 
of drug delivery, nanostructured drug delivery systems are 
posited as strategies capable of surmounting ocular barriers, 
precisely targeting the posterior segment, and augmenting 
drug permeation through controlled-release mechanisms [3]. 
The gamut of drug delivery to the eye encompasses various 
dosage forms: semisolid forms like gels and ointments, 
solid forms such as ocular inserts, liquids like solutions and 
suspensions, and intraocular forms including implants and 
injections. Of particular note is the in-situ hydrogel, a speciϐic 
type of ocular gel that can manifest as organogel or hydrogel. 
Hydrogels proffer diverse advantages, encompassing 
reduced dose concentrations, diminished dosing frequency, 

Abstract 

Hydrogel-based formulations hold signifi cant promise for treating ocular diseases that impact the posterior 
segment of the eye. These formulations exhibit the ability to surmount ocular barriers and off er sustained drug 
release, rendering them effi  cacious drug delivery systems. This article addresses the challenges linked to 
treating disorders aff ecting the posterior eye segment and underscores the imperative for less invasive drug 
delivery methodologies. We further delve into diverse contemporary ocular dosage forms, encompassing gels, 
nanostructures, and implants, with a specifi c emphasis on hydrogels. Hydrogels off er several merits, including 
precise targeting, sustained release, enhanced bioavailability, and non-invasiveness. Moreover, they curtail the 
risk of adverse eff ects and foster patient adherence. An enthralling advancement is the amalgamation of hybrid 
drug delivery systems, integrating nanoparticles, liposomes, dendrimers, and stimuli-activated nano-systems, 
with hydrogels for posterior eye ailment treatment. These hybrid nano-systems exhibit promise in enhancing 
drug stability, prolonging drug release, and pinpointing specifi c tissues within the posterior segment. We also 
provide an overview of ongoing clinical trials and approved hydrogel-based drug delivery systems, like Retisert 
and Ozurdex. These systems have demonstrated effi  cacy in managing chronic non-infectious uveitis, Age-
related Macular Degeneration (AMD), and diabetic macular edema. Nevertheless, challenges persist, including 
optimizing bioavailability, maintaining drug stability, and implementing personalized treatment approaches. The 
incessant evolution of gel-based drug delivery systems stands to substantially enhance patients’ quality of 
life and establish new benchmarks in treating posterior eye diseases. The future of ophthalmology brims with 
excitement, as gel-based drug delivery systems hold the potential to revolutionize ocular therapies, providing 
eff ective remedies for an array of vision-related affl  ictions.
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heightened patient comfort, and elevated bioavailability 
owing to prolonged ocular residence and reduced drainage 
through the nasolacrimal duct. Additionally, they afford facile 
and cost-effective manufacturing. Nonetheless, hydrogels do 
entail certain drawbacks, including transient blurred vision, 
challenges in self-insertion, and potential eyelid adherence. 
Moreover, their efϐicacy in improving bioavailability is 
circumscribed. The classiϐication of hydrogels is multi-faceted, 
encompassing stimulus type, mechanism, and chemical 
reaction [4]. As advances in gel-based drug delivery persist, 
the quality of life for patients stands to markedly improve, 
ushering in new benchmarks in eye treatment. The trajectory 
of treating posterior eye disorders hinges upon the synthesis 
of compound or hybrid nano-systems, amalgamating 
nanoparticles, hydrogels, liposomes, dendrimers, stimuli-
activated nano-systems, and nanocarriers with implants. 
Staying abreast of these strides confers beneϐits upon both 
ophthalmologists and patients, fostering enhanced treatment 
options for conditions like macular edema. In this review, 
we elucidate the mechanisms governing drug traversal and 
novel drug delivery carriers, underscoring their capacity for 
targeted drug delivery to the posterior eye segment through 
minimally invasive techniques. The discussion commences by 
addressing the challenges of drug delivery to the posterior 
eye region, followed by an exploration of pragmatic drug 
delivery systems facilitating efϐicacious drug administration. 
Concluding the discourse is an investigation into hydrogels, 
categorized based on stimuli, accompanied by a survey of 
recent advancements in this arena.

Methodology in data collection and analysis
The data for this study were meticulously gathered 

through an exhaustive review of existing literature, research 
papers, and studies focused on hydrogel-based formulations 
for drug delivery to the posterior segment of the eye in the 
ϐield of ophthalmology. Multiple reputable sources, including 
peer-reviewed journals, academic publications, conference 
proceedings, and respected online references, were consulted 
to compile pertinent data and gain comprehensive insights 
into the various applications and implications of hydrogel-
based drug delivery in ocular health. The process of study 
selection involved a thorough examination of titles, abstracts, 
and full texts to ensure that the chosen studies provided 
valuable insights into this specialized area. Emphasis was 
placed on selecting studies that presented diverse examples 
showcasing the applications of hydrogel-based drug delivery 
in addressing various aspects of ocular health. This rigorous 
methodology ensures the credibility and reliability of the data 
presented in this article.

Challenges in delivering drugs to the posterior segment 
of the eye

The effective delivery of drugs for the treatment of various 
eye diseases faces signiϐicant challenges due to barriers within 

the posterior segment. This intricate region, encompassing 
the retina, choroid, and vitreous humor, creates a complex and 
regulated structure that hinders the optimal distribution of 
medications. Overcoming these barriers to access the posterior 
eye segment necessitates innovative strategies. There are two 
primary methods for administering drugs to this segment, 
each with distinct advantages and drawbacks. The ϐirst 
method involves topical and systemic administration. Despite 
their common usage, these methods prove inadequate due 
to the physiological barriers inherent to the region, resulting 
in limited bioavailability. Alternatively, intraocular and 
periocular (subconjunctival, sub-tenon, posterior juxtascleral) 
routes have been developed to address these challenges [5]. 
These techniques entail the injection or implantation of drugs 
through the ocular surface into the intraocular tissues [6,7]. 
While effective in symptom control, these approaches can be 
considerably invasive. A comprehensive understanding of 
these physiological barriers is imperative for the development 
of innovative solutions. Numerous barriers contribute to the 
difϐiculty of achieving therapeutic drug concentrations in the 
posterior eye segment:

Choroid and bruch’s membrane: Positioned between 
the sclera and the retina, the choroid and Bruch’s membrane 
serve as substantial obstacles to drug diffusion. The choroid 
imposes greater restrictions on the delivery of small 
molecules compared to the sclera. Choroidal clearance has 
a relatively minor impact on drug elimination in contrast to 
the conjunctival route. For instance, when administering 10 
mg of Triamcinolone Acetonide (TA) into the sub-tenon space 
of rabbits, no drug reached the vitreous. This lack of drug 
presence persisted even after removing choroidal clearance 
through cryotherapy. However, upon eliminating conjunctival 
blood and lymph clearance, TA was detected in the vitreous 
[8].

Blood-retinal barrier (BRB): The BRB consists of two 
main components: the outer BRB, formed by tight junctions in 
the Retinal Pigmented Epithelium (RPE), and the inner BRB, 
comprised of endothelial cells in retinal capillaries. The outer 
BRB, an epithelial layer with robust tight junctions, prevents 
passive paracellular drug diffusion. Hydrophobic molecules 
possess a greater capacity to cross the RPE than hydrophilic 
molecules due to their ability to diffuse through intracellular 
routes [9]. The inner BRB lines the microvasculature that 
supplies the neural retina, creating a robust structural barrier 
against molecular diffusion to and from the retina [10].

Vitreous and inner limiting membrane: The vitreous, a 
hydrophilic gel-like ϐluid that occupies the posterior segment 
between the retina and the lens, presents a challenge due to 
its immobility and limited ϐlow. Comprising primarily water 
(99%), along with collagen ϐibrils, Hyaluronic Acid (HA), 
chondroitin sulfate, heparan sulfate, and non-collagenous 
proteins, the vitreous gel restricts drug movement through 
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diffusion [11]. Clearance from the posterior segment relies 
on molecules diffusing through the endothelium of retinal 
blood vessels within the inner BRB and/or the RPE to reach 
the choriocapillaris. Smaller, more lipophilic molecules 
experience enhanced posterior clearance compared to larger, 
hydrophilic molecules [12].

Physicomechanical characteristics for drug delivery to 
the posterior segment of the eye

Efϐiciently designing drug delivery systems that target the 
posterior segment of the eye presents a series of challenges. 
An integral consideration in this endeavor involves deϐining 
the physicochemical attributes of the drug delivery system, 
a crucial determinant of optimal functionality. This paper 
underscores the paramount role of hydrogels in delivering 
drugs to the posterior segment. Notably, hydrogels have 
garnered signiϐicant attention due to their mechanical 
properties that harmonize with the tissue in the posterior 
segment. Given the intricacy and sensitivity of this tissue, the 
capability of hydrogels to facilitate controlled drug release 
has captured the interest of both scientists and surgeons as 
promising carriers for posterior drug delivery [13].

When crafting a hydrogel as a drug carrier, the principal 
emphasis is placed on its proϐiciency in effectively 
encapsulating and dispensing drugs, ensuring efϐicient 
bioavailability. Hydrogels exhibit the ability to encapsulate 
highly concentrated drugs and to sustain their gradual release 
from the crosslinked matrix. Additionally, achieving low 
hydrogel viscosity emerges as a pivotal factor in their design. 
This low viscosity guarantees uniform dispersion of the 
active compound prior to gelation [14]. Maintaining viscosity 
stability becomes imperative in maximizing therapeutic 
efϐicacy, as prevailing ocular hydrogels may witness 
diminished bioavailability under physiological conditions due 
to viscosity alterations stemming from temperature shifts and 
dilution effects [15].

Another pivotal facet is the rheological characteristics of 
hydrogels, dictating their rigidity. Investigations indicate that 
augmenting the cross-linker concentration and microsphere 
loading can heighten hydrogel stiffness, bolstering their 
ability to withstand tear ϐlushing and prolonging their 
retention within the ocular cavity [16]. Pan, et al. [17] have 
pioneered hydrogel-based eye drops and devised two-
component biomimetic hydrogels capable of forming in situ, 
offering customizable mechanical and osmotic attributes akin 
to the vitreous humor. This innovation augments drug release 
efϐiciency and effectiveness. The study underscores that 
hydrogel applications in treating ocular disorders, leveraging 
their favorable rheology and viscoelasticity, can effectively 
counteract tear ϐlushing.

An additional milestone is achieved by Sruthi Santhanam, 
et al. [18], who have developed a tunable, two-component 
biomimetic hydrogel with mechanical and osmotic properties 

resembling the vitreous. Comprising gellan, collagen, 
and poly(methacrylamide-co-methacrylate), an analog of 
hyaluronic acid, this hydrogel showcases optical and physical 
properties mimicking the vitreous. Notably, shear storage 
moduli ranging from 3 to 358 Pa at 1 Hz and sol-gel transition 
temperatures spanning 35.5 °C to 43 °C were achieved. 
This adept manipulation of mechanical attributes, swelling 
behavior, and transition temperatures facilitates the creation 
of biocompatible hydrogels possessing properties akin to the 
vitreous.

Moreover, meticulous regulation of hydrogel degradation 
signiϐicantly inϐluences drug delivery to the posterior segment. 
Post-injection, hydrogels assume a gel-like structure, with 
drug release primarily transpiring through gradual hydrogel 
degradation. Researchers have achieved macroscopic 
hydrogel degradation control by adjusting ester chemistry 
and precursor polymer structural parameters, leading to 
adjustable degradation durations spanning weeks to years 
[19].

Practical drug delivery systems for eff ective drug 
administration to the posterior segment

Treating the posterior segment of the eye presents a 
signiϐicant challenge due to the intricate path drug molecules 
must navigate to reach their intended targets. Various methods, 
including non-invasive approaches, have emerged to help 
drugs overcome barriers within the posterior eye. Among the 
promising drug delivery systems, implants, nanosystems, and 
gene therapy stand out. In this section, our focus will be on 
the gel-based drug delivery system and its potential for drug 
administration to the posterior segment. In this section, we 
brieϐly discuss recent advancements in common drug delivery 
systems for comparison with new progress on gel-based drug 
delivery systems, which is the main focus of this review

Vitreous implants: The contemporary landscape offers 
a diverse array of ocular implants, classiϐied based on their 
intended applications. Vitreous, characterized as a hydrated 
gel-like substance, accommodates controlled drug delivery 
carriers designed to extend drug release. This approach 
involves minimally invasive surgery to implant carriers 
within the vitreous [6]. Notably, sustained drug release is 
achieved through embedding dexamethasone within a matrix 
of 50:50 poly(lactic-co-glycolic acid) (PLGA), a biodegradable 
biopolymer. This matrix, as seen in the Ozurdex® implant 
(Allergan Inc.), maintains therapeutic dexamethasone 
concentrations for up to 6 months. This implant, with 
dimensions of 0.46 mm diameter and 6 mm length, features 
an initial loading dose for 2 months followed by a 4-month 
plateau release phase [20]. Photoreactive implants offer 
an innovative strategy for controlling ocular drug delivery. 
By irradiating photoactive materials, photochemical and 
photothermal effects are induced to govern drug release, 
offering precise control without direct carrier contact [21].
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Scleral implants: The potential of scleral implants as a 
more effective and less invasive route for posterior segment 
drug delivery has emerged. Microneedles (MNs), applied 
to ocular tissues for over a decade without adverse effects, 
are promising tools. Polymeric microneedle patches exhibit 
effectiveness in delivering small molecules, macromolecules, 
and nanoparticles to the posterior eye. One approach involves 
applying a microneedle patch to the corneal surface, enabling 
needle dissolution and subsequent drug release in the 
corneal epithelium [22,23]. A self-plugging MN (SPM) has 
been developed to simultaneously facilitate intraocular drug 
delivery and seal the scleral puncture [24]. The efϐicacy of 
microneedle scleral patches (MSPs) in delivering triamcinolone 
acetonide to the posterior segment has been demonstrated 
by Roy, et al. [25]. These patches, both Microneedle Scleral 
(MSP) and Microneedle Corneal (MCP), were fabricated using 
rapidly dissolvable polyvinylpyrrolidone through the micro-
molding technique.

Nano system carriers: Over the past decade, 
nanotechnology has been explored for sustained drug delivery. 
This investigation extends to nanostructures’ potential for 
posterior segment drug delivery. Diverse nanostructures, 
including Polymeric Nanoparticles (NPs), liposomes, 
dendrimers, polymeric micelles, inorganic nanoparticles, 
and carbon nanotubes, encapsulate drugs within their outer 
shells. Solid Lipid Nanoparticles (SLNs) and Nanostructured 
Lipid Carriers (NLCs) have exhibited enhanced ocular 
bioavailability coupled with controlled sustained drug 
release. These carriers are biocompatible, biodegradable, 
and sterilizable. SLNs are colloidal systems with a sphere-
shaped structure, often used for hydrophilic and hydrophobic 
drug delivery. Nanostructured Lipid Carriers (NLCs) address 
SLN limitations, offering more space for drug storage and 
preventing drug expulsion [26-30].

Gene therapy: Gene therapy, a promising approach for 
treating posterior eye diseases, remains in its developmental 
stages. Two main types of gene therapy exist: ex vivo gene 
therapy involves genetically modifying cells outside the 
body before re-introducing them, while in vivo gene therapy 
directly delivers genes to cells within the body. This strategy 
addresses inherited diseases caused by gene mutations and 
acquired diseases resulting from damaged genes. Various 
vectors, including modiϐied viruses and non-viral vectors, 
are used for gene delivery [31]. Intravitreal injection serves 
as the primary route for gene therapy administration, with 
ongoing trials targeting posterior eye diseases. Notable 
examples include Voretigene neparvovec-rzyl (Luxturna™), 
approved for treating Leber Congenital Amaurosis (LCA), 
and RGX-314, aimed at continuous anti-VEGF treatment 
[32,33]. SAR422459 (EIAV-ABCA4) is undergoing preclinical 
trials for Stargardt disease, aiming to enhance vision through 
gene delivery [34]. C ationic polymers are effective methods 
of gene delivery. Polyethylenimine (PEI) has demonstrated 

effective transfection of various human cell lines through the 
proton-sponge effect. However, the main disadvantage of PEI 
is its limited biocompatibility. There are many studies that 
attempt to improve biocompatibility including branching of 
PEI and conjugation with other polymers. Natural polymers, 
with better biocompatibility, have also been trialed as gene 
delivery vectors. Liposomes, which are vesicles of lipid with 
1 or more phospholipid bilayers enclosing an aqueous core 
have also demonstrated the ability to deliver the RPE-65 gene 
into knock-out mice [35].

Direct injection: Intravitreal injection, the most common 
route, involves injecting drugs directly into the vitreous 
humor. Although effective, it can cause inϐlammation and 
infection. Subconjunctival injection offers a less invasive 
alternative, involving injection between the conjunctiva and 
sclera. This approach has fewer side effects but is less effective. 
The periocular injection targets tissues surrounding the eye, 
offering even less invasiveness and fewer side effects [36-38].

Gel-based drug delivery system

Hydrogels are commonly used as a solution for overcoming 
drug delivery limitations. They are similar to biological 
matrices in terms of their high water content, which ranges 
from 70 to 99% of the gel weight, making them compatible 
with the vitreous structure in the posterior segment area 
[39,40]. Hydrogels are semi-solid and not easily injectable into 
the vitreous. As such, responsive hydrogels that can transition 
from solution to gel in response to speciϐic stimuli are often 
used for intravitreal applications [41]. This transition can 
occur immediately before or upon intravitreal administration, 
triggered by physiological conditions such as pH, temperature, 
ionic strength, non-physiological conditions such as light, or 
an in situ chemical reaction [42]. Figure 1 illustrates different 
stimuli that might be involved in the gelation process.

Thermosensitive hydrogels: Thermosensitive hydrogels 
are a unique type of hydrogel that reacts to temperature 
changes by altering its physical properties. This makes them 
an ideal choice for drug delivery to speciϐic areas of the body, 
such as the eye. Thermosensitive hydrogels are composed of 
polymers that have a Lower Critical Solution Temperature 
(LCST). When talking about thermosensitive hydrogels, 
LCST refers to the temperature that causes the hydrogel to 
change from a liquid or sol state to a gel state. The LCST is 
the temperature at which this sol-gel transition occurs. The 
hydrogel is in a liquid state below the LCST, making it easy to 
inject into the body. However, once the temperature reaches 
the LCST, the hydrogel transforms into a gel and forms a depot 
at the injection site. This change creates a gel matrix with 
regulated porosity, which allows for the controlled release of 
drugs contained within the hydrogel [43]. Thermosensitive 
hydrogels have several advantages for drug delivery to the 
posterior segment of the eye, including controlled drug release, 
targeted delivery, and ease of administration. However, 
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challenges such as biocompatibility, drug loading capacity, 
and stability must be overcome for successful use. In a study 
conducted by Gado, et al. [44], a chitosan grafted poly(n-
isopropylacrylamide) (Cs-g-PNIPAAm) gel was examined 
for its ability to deliver small molecular weight, multiple 
tyrosine kinase inhibitor Sunitinib malate in a sustained 
manner intrasclerally. The hydrogel affected the rheological 
properties of the hydrogel and the ability to be administered 
through a syringe. By controlling the temperature of the 
gelation process and ionic conjugation of sunitinib with the 
amine group of chitosan, better control over drug release was 
achieved. The transition temperature was found to be 32 °C 
± 0.5 °C and the hydrogel was able to release an approximate 
concentration of 10 μg/day of sunitinib in-vitro for 28 days. It 
was observed that the drug was released from the hydrogel 
through both the diffusion and erosion mechanisms. In animal 
studies, speciϐically porcine sclera, up to 40% sustained 
release of sunitinib was achieved with the hydrogel compared 
to sunitinib solution (2 mg/ml). Annala, et al. [45] designed 
an injectable hydrogel delivery system for sustained ocular 
delivery of dexamethasone. They designed a self-healing 
hydrogel using a thermosensitive ABA triblock copolymer, 
covalently linking the drug dexamethasone to the polymer 
through a copolymerization process. Hydrogel formation 
occurred through covalent cross-linking at 37 °C, facilitated 
by the presence of disulϐide bonds in the cystamine cross-
links, making the system injectable. The hydrogel exhibited 
a controlled release of dexamethasone over an extended 
period of 430 days at 37 °C, making it a promising candidate 
for long-term therapeutic applications. Recently, Meany, 
et al. [46] conducted a study on vision impairment caused 
by macular degeneration and glaucoma. They developed a 
supramolecular Polymer-Nanoparticle (PNP) hydrogel for 

intravitreal delivery of the glaucoma drug bimatoprost. The 
PNP hydrogel possesses important properties such as shear-
thinning and self-healing, making it easily injectable, and it 
enables the slow release of the drug in the vitreous humor. 
In an in vivo study the intravitreally injected PNP hydrogels 
formed depots that degraded gradually over time, maintaining 
detectable levels of bimatoprost in the vitreous humor for up 
to 8 weeks after injection. The researchers emphasized the 
need to optimize the tolerability of the PNP hydrogel in the 
eye since it still poses clinical risks like retinal detachment 
due to the resulting patchy ϐibroplasia (Figure 2).

Photosensitive hydrogels: Polymers called 
photoresponsive can turn from liquid to gel when exposed 
to Near-Infrared (NIR), Visible (VIS), or Ultraviolet (UV) 
radiation. These types of light can go through the cornea 
and reach the deeper parts of the eye [47]. As the speciϐic 
wavelength emits photosensitive hydrogel it crosslinks 
and leads to gel formation. When the hydrogel is exposed 
to a certain wavelength of light, it becomes crosslinked and 
forms a gel. Peng, et al. [48] created a mixture of two types 
of polymers called AB-DEX and CD-DEX, which respond to UV 
radiation at 365 nm. When exposed to this light, the AB-DEX 
polymer changes shape and causes the inclusion complex to 
break apart, forming a soluble polymer mixture that releases 
macromolecules. This change can also be used to form a gel 
in the vitreous of the eye for sustained release. In another 
study, Bisht, et al. [49] developed a system that combines 
poly(lactic-co-glycolic) acid nanoparticles (PLGA NPs) with 
light-responsive injectable implants (ISFIs) for safe delivery 
of therapeutic peptides to the eye. This composite system can 
be activated by UV light for 12 minutes and has been shown to 
be biocompatible in zebraϐish embryos. Gelatin methacryloyl, 
also known as GelMA, has become a popular choice due to its 

Figure 1: Schematic fi gure represents the sol-gel transition in hydrogel. The sol-gel transition is triggered by specifi c environmental stimuli, such as 
changes in temperature, pH, light, ions, or the presence of certain chemicals or biomolecules. When these stimuli are applied, the hydrogel undergoes 
a phase transition, transforming from a sol into a gel or vice versa. This transition allows the hydrogel to change its physical properties, such as 
swelling, volume, and mechanical strength, in response to the external triggers. Upon reaching the desired location, the hydrogel can undergo the sol-
gel transition, releasing the drug at the target site while minimizing systemic exposure and side eff ects.
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ability to slowly release substances and its low toxicity. In one 
study, GelMA hydrogels were combined with Triamcinolone 
Acetonide (TA) and then exposed to light for crosslinking after 
being injected into the vitreous cavity. The hydrogels quickly 
formed a gel upon injection, and in vitro testing showed that 
the TA-hydrogels had a slower and more sustained release of 
TA compared to TA suspensions [50].

Chemical stimuli hydrogels: In 2001, Nobel laureate 
K. Barry Sharpless introduced the term “click chemistry” 
to refer to a group of chemical reactions that can be used to 
prepare chemically crosslinked hydrogels. These reactions 
are especially helpful in producing complex molecules 
with accuracy and control. Click hydrogels have numerous 
beneϐits over conventional hydrogel synthesis approaches, 
including ease of preparation, high efϐiciency, and the ability 
to regulate gel properties. Some of the most frequently used 
click chemistry reactions in making click hydrogels are Azide-
Alkyne, Thiol-Ene, and Diels-Alder [51]. Click crosslinking 
involves a spontaneous reaction and covalent bond formation 
upon mixing, resulting in the formation of in situ gel. In a study 
conducted by Yu, et al. [52] Hyaluronic Acid (HA) and Dextran 

(DEX) were used. They were functionalized with vinyl sulfone 
and thiol groups, respectively, forming HA-VS and DEX-SH. 
When these two functionalized polymers were mixed, a “click” 
reaction occurred between the thiol and alkene functional 
groups, resulting in the formation of covalent thioether 
crosslinks between the polymer chains. This hydrogel was 
found to be well tolerated in rabbit eyes and provided a 
sustained release of bevacizumab for at least six months 
in vivo. In another study, Ilochonwu, et al. [53] synthesized 
a polymer that can undergo a gel transition via Diels-Alder 
reaction (DA). This DA-crosslinked hydrogel was based on 
HA and PEG polymers and has potential applications as a 
long-acting sustained delivery system for bevacizumab and 
other anti-vascular endothelial growth factor therapeutics. 
Once the PEG was injected into the posterior segment, the DA 
reaction was initiated because HA is a polysaccharide that is 
abundantly present in the vitreous of the eye. The formulation 
was designed to be injectable into the vitreous cavity using 
a small needle (29G). After injection, the aqueous polymeric 
solution formed a crosslinked hydrogel at the administration 
site, trapping the antibody dissolved in the same solution to 
obtain an intraocular depot system.

 
Figure 2: Schematic of how bimatoprost-loaded polymer-nanoparticle (PNP) hydrogels are prepared and used to release drugs for a longer period in 
the vitreous humor (VH) through intravitreal (ITV) injection. A) A mixture of poly(ethylene glycol)-block-poly (lactic acid) nanoparticles (PEG-PLA NPs), 
HPMC-C12, and bimatoprost is created. Once injected, the hydrogels form a sustained delivery depot that releases bimatoprost gradually over an 
extended period. B) As time passes, the hydrogel gradually dissolves, releasing the drug and hydrogel components until there is no longer any depot 
material left. The drug is represented in the schematic by orange hexagons. C)The histopathological examination of rabbit eyes after the administration 
of PNP hydrogels showed a minimal to mild foreign body response (FBR) in the VH and along the ventral retina. Microscopic observations indicated 
that the PNP hydrogel caused some impact. An image of the full rabbit eye stained with hematoxylin and eosin (H&E) showed an aff ected region 
extending from the ciliary body and along the ventral peripheral retina, with a scale bar of 2500 μm. A closer look at the aff ected regions revealed the 
presence of foamy macrophages. Adapted and modifi ed from [46].



Hydrogel-Based Formulations for Drug Delivery to the Posterior Segment of the Eye

www.biomedscijournal.com 044https://doi.org/10.29328/journal.abse.1001024

pH-sensitive hydrogels: pH-sensitive hydrogel is 
designed to respond to changes in pH levels by changing its 
structure and properties. It remains stable under normal 
pH conditions but becomes more permeable and prone to 
releasing substances in acidic or alkaline environments. The 
composition of pH-sensitive hydrogel involves cross-linked 
polymer networks that respond to pH variations. The polymer 
chains contain acidic or basic functional groups, which enable 
the hydrogel to swell or shrink, change its structure, and affect 
the release of encapsulated drugs. Some common polymers 
used in the study of pH-responsive hydrogels are polyacrylate, 
poly(N-isopropyl acrylamide), and n-vinyl caprolactam [54]. 
These hydrogels can effectively deliver drugs to the eye 
over a prolonged period of time. The hydrogels are capable 
of expanding or contracting in response to changes in pH, 
which enables them to regulate the release of the drug. Yu, 
et al. [55] designed and synthesized a stimuli-responsive three-
dimensional hydrogel system composed of Carboxymethyl 
Chitosan (CMC) and poloxamer, using a poly (ethylene oxide)/
poly(propylene oxide)/poly(ethylene oxide) (PEO–PPO–PEO) 
block copolymer. The hydrogel exhibited a reversible sol-gel 
transition at low concentrations upon changes in temperature 
and/or pH. The cross-linked hydrogels demonstrated a phase 
transition in different temperature and pH solutions, with 
higher swelling observed at 35 °C and pH 7.4 due to larger 
pores. The release rate of the model drug was highest at 35 °C 
and pH 7.4, making this novel hydrogel a promising candidate 
for pH-temperature-responsive ophthalmic drug delivery 
applications.

Ion-sensitive hydrogel: Ion-sensitive systems are 
designed to respond to changes in the ionic strength of the 
environment by altering the solution’s viscosity. In situ 
hydrogels that are ion-sensitive release their drug content 
when there is a change in the ion concentration of the solution, 
causing it to solubilize. Essentially, contact between cations 
(such as Na+, Mg2+, and Ca 2+) in tear solution and electrolytes 
results in the solution becoming a clear and viscous gel [56]. 
Gellan gum is a polysaccharide derived from Sphingomonas 
elodea, suitable for applications like drug delivery, biosensors, 
and tissue engineering due to its gel-forming properties 
and biocompatibility. In ion-sensitive hydrogels, gellan gum 
serves as a key component in the matrix, forming gels in the 
presence of cations. These hydrogels are sensitive to changes 
in ion concentration, leading to alterations in swelling and 
mechanical properties. Moreover, its ease of modiϐication 
allows for customizing the hydrogel’s responsiveness and 
tailoring it for speciϐic uses. Xu, et al. [57] conducted a study 
to formulate an ion-sensitive in situ gel (ISG) of Brimonidine 
Tartrate (BRT) for patients with open-angle glaucoma and 
high intraocular pressure. The optimized ISG, containing 2 mg/
mL BRT and 0.45% gellan gum, exhibited prolonged retention 
time and increased bioavailability of the drug in the eye. In 
vitro release tests showed a quick release and high burst effect 
of BRT in the ISG. The pharmacokinetic study in rabbit eyes 

revealed that the BRT-ISG had a 2.7 times higher maximum 
concentration and 3.4 times greater total exposure to a drug in 
the eye over a speciϐic time period compared to commercially 
available BRT eye drops. The ISG formulation provided rapid 
and sustained release effects, overcoming the drawbacks of 
the fast loss and short effective time of commercial eye drops. 
The researchers suggested that this new ISG could potentially 
become a safer, more effective, and more convenient drug 
option for delivering drugs into the intraocular part. Alginate is 
another popular choice for ion-sensitive gels due to its unique 
properties. It is sensitive to changes in calcium ions, allowing 
it to form gels in response to speciϐic ions in the environment. 
Its gel-forming ability with divalent cations, like calcium 
ions, provides gentle gelation without harsh cross-linking 
agents. Alginate gels have good mechanical strength and can 
be engineered for controlled release of ions or substances, 
making them suitable for sustained drug delivery and tissue 
engineering applications [58,59]. In Table 1, the most used 
biomaterials for ocular hydrogels, their nature, crosslinking 
or gelation process, biodegradability rate, and degradation 
mechanisms were listed.

Hybrid hydrogels: By combining different formulations 
with varying properties, such as degradation rates or 
responsiveness to external and internal stimuli (e.g., 
temperature, pH, enzymes), it becomes possible to ϐinely tune 
the release kinetics of drugs. This allows for sustained drug 
release over an extended period, reducing the frequency of 
drug administration and improving patient compliance. One of 
the limitations of drug delivery with hydrogels is related to the 
chemical properties of the drugs, particularly drug solubility. 
Drugs with low solubility may not be easily dispersed or 
evenly distributed within the hydrogel. As a result, the 
drug’s release from the hydrogel may be unpredictable and 
inefϐicient, leading to suboptimal therapeutic outcomes. 
To overcome these limitations, researchers may resort to 
different strategies. Terreni, et al. [67] developed a new 
potential Ocular Drug Delivery System for the poorly water-
soluble drug Cyclosporine-A (CyA) using a combination of in 
situ gelling systems and self-assembling nanomicellar carriers. 
They utilized two non-ionic surfactants, VitE-TPGS and RH-
40, to produce the nanomicelles. The selected nanomicellar 
formulation was combined with optimized ion-sensitive 
polymeric dispersions of gellan gum (GG-LA) to trigger the 
sol-gel transition. This combined approach resulted in clear 
aqueous dispersions, easily instilled, which formed a viscous 
gel when in contact with tear ϐluid, thereby improving CyA 
ocular bioavailability. In another study, Chen, et al. [68] 
developed and optimized an injectable thermosensitive 
polymeric hydrogel encapsulating Tetramethylpyrazine 
(TMP) nanoparticles (TMP-NCs-gel) to achieve controlled 
drug release and high drug-loading. The researchers focused 
on TMP, a compound known for its multitarget properties, 
including anti-angiogenic, anti-inϐlammatory, antioxidant, 
and anti-ϐibrotic effects. However, the clinical use of TMP in 
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ocular disorders was hindered due to its lipophilic properties 
and poor absorption. The hydrogel allowed the sustained 
release of TMP, both in vitro and in vivo, and demonstrated 
a porous structure with the ability to transition from liquid 
to gel phase when the phase transition temperature was 
reached. Su, et al. [69] developed a novel drug co-delivery 
system, for enhancing the efϐicacy of therapy in wet age-
related macular degeneration (wAMD). The Bor/RB-M@TRG 
system consisted of borneol-decorated rhein and baicalein-
coloaded microemulsions (Bor/RB-M) as the therapy entity 
and a temperature-responsive hydrogel matrix as the 
intravitreal depot. The researchers found that Bor/RB-M 
exhibited potent in vitro anti-angiogenic effects, possibly due 
to improved cellular uptake and synergistic actions of rhein 
and baicalein targeting anti-angiogenic and anti-oxidative 
stress pathways, respectively. Coumarin-6-labeled Bor/
RB-M@TRG (Bor/C6-M@TRG) exhibited deep penetration 
into the retina and stable accumulation in the Retinal Pigment 
Epithelium (RPE) layer for at least 14 days. This system holds 
the potential for addressing the challenges of delivering drugs 
to the posterior ocular segment and achieving sustained 
therapeutic effects for wAMD patients. Thermoresponsive 
hydrogels (e.g. N-isopropylacrylamide, NIPAAM) that collapse 
in physiological conditions can entrap and sustain the release 
of a therapeutic protein. However, most Thermoresponsive 
hydrogels e.g. N-isopropylacrylamide, NIPAAM) are not 
biodegradable and often require invasive surgery to remove 
the depot. Adding biodegradable macromolecular to improve 
the biodegradability of the NIPAAM hydrogel. The crosslinker 
was designed to enhance the biodegradability of the NIPAAM 
hydrogel, making it suitable for ocular tissues due to the small 
size of the eye and the risks associated with non-degradable 
implants. Acrylated hyaluronic acid is a biodegradable 
crosslinker that showed a promising strategy for sustained 
ocular drug delivery, offering new possibilities for delivering 
proteins and antibodies to the posterior segment of the 
eye [70]. Cell-based therapy using three-dimensional (3D) 
polymeric scaffolds that mimic the native Extracellular Matrix 
(ECM) is one of the choices for developing effective treatments 
for retinal diseases like AMD. Recently researchers prepared 
3D scaffolds using alginate and Bovine Serum Albumin (BSA) 

with fenoϐibrate (FNB) using the freeze-drying technique. 
Incorporating BSA enhanced the scaffold porosity and 
crosslinking degree, resulting in a robust scaffold suitable 
for retinal regeneration. The ALG-BSA conjugated scaffolds 
demonstrated higher FNB loading capacity, slower release 
in the simulated vitreous humour, and better cell viability 
and distribution with ARPE-19 cells compared to other 
scaffold types. The results indicate that ALG-BSA Maillard 
reaction conjugate scaffolds hold promise for retinal disease 
treatment and as implantable scaffolds for drug delivery in 
retinal regenerative applications. The scaffolds demonstrated 
biodegradability, biocompatibility, and enhanced mechanical 
stability essential for ocular applications [71]. A dual stimuli-
responsive controlled drug delivery system allows for precise 
and controlled drug release, which can be tailored to the 
speciϐic needs of the patient or the targeted disease site. 
The two stimuli used in this context can be either external 
or internal, and the drug release is typically activated by a 
combination of these triggers. Targeted drug delivery through 
different stimuli-responsive mechanisms has been the focus 
of recent research [72]. Shareef Khan, et al. [73] developed 
and optimized a novel in situ gelling system for Triamcinolone 
Acetonide (TAA) delivery, utilizing a dual-responsive 
approach with reacted tamarind seed xyloglucan (RXG) as 
the thermoresponsive component and kappa-Carrageenan 
(κ-CRG) as the ion-sensitive component. The proportions 
of RXG and κ-CRG in the in situ gels were optimized based 
on rheological properties, and the resulting formulation 
exhibited good ϐlow properties at room temperature but 
transformed into a robust gel in the presence of simulated 
tear ϐluid at 35 °C. The in vivo pharmacokinetic studies in 
rabbits revealed that the optimized dual-responsive in situ gel 
provided higher and sustained TAA exposure in the vitreous 
humor compared to a hydroxypropyl-β-cyclodextrin-based 
aqueous suspension of TAA. This study suggests that this 
TAA-loaded dual-responsive in situ gel could offer an effective 
alternative to the intravitreal route for treating posterior 
uveitis, potentially allowing administration in the precorneal 
area for improved ocular drug delivery. The latest research 
on hydride hydrogels is presented in Table 2, outlining their 
advantages and limitations.

Table 1: Most used biomaterials for ocular hydrogels and their characteristics.
Hydrogel Biomaterial Nature Crosslinking/Gelation Process Degradation Duration Degradation mechanism Ref

Gelatin Natural polymer derived from 
collagen 

Physical crosslinking induced by 
temperature change

Moderate (days to 
weeks) Enzymatic (collagenase) [60]

Hyaluronic acid Natural polysaccharides found 
in eye vitreous

Chemical crosslinking with polymers 
containing reactive groups 

Moderate (days to 
weeks)

Enzymatic 
(hyaluronidase) [61]

Chitosan Derived from partial 
deacetylation of chitin Ionic crosslinking using polyanions Moderate (weeks to 

months) Enzymatic (chitinase) [62]

Poly(ethylene glycol) (PEG) Synthetic polymer Chemical crosslinking using acrylate end 
groups Slow (months to years) Hydrolytic [63]

Poly(N-isopropylacrylamide) Synthetic polymer Physical crosslinking induced by 
temperature change Not Biodegradable N/A [64]

Gellan gum Microbial extracellular 
polysaccharide Ionic crosslinking with cations Moderate (weeks to 

months) Enzymatic (hydrolase) [65]

Alginate Natural polysaccharides derived 
from brown algae

Ionic crosslinking with divalent cations like 
Ca2+

Moderate (weeks to 
months) Enzymatic (alginate lyase) [66]
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Future perspectives of gel-based drug delivery systems

Delivering therapeutic agents to the posterior eye is a 
formidable challenge due to the complex eye anatomy and 
limited understanding of underlying diseases. Effective drugs 
and delivery systems demand a deep understanding of cellular-
level disease pathways. Ocular drug delivery technology has 
made substantial progress in treating posterior eye conditions. 
Traditional treatments involve injections or implants of 
agents like anti-VEGF and anti-inϐlammatory drugs. However, 
repeated invasive dosing raises concerns about compliance 
and ϐinancial burden for patients and clinicians alike.

In this context, less invasive ocular drug delivery systems 
are crucial, offering sustained drug release and enhanced 
effectiveness. Gel-based drug delivery systems reach drugs to 
the posterior eye tissues. This approach minimizes off-target 
effects, amplifying therapeutic impact and reducing side-effect 
risks. Sustained drug release from these systems eliminates 
the need for frequent dosing, greatly enhancing patient 
compliance and treatment outcomes. Moreover, gels serve as 
protective barriers, safeguarding delicate therapeutic agents 
from degradation and obviating the need for preservatives 
that might cause irritation.

Furthermore, gel-based systems offer the least invasive 
or non-invasive administration routes, such as topical 
application, minimizing patient discomfort and infection risks 
associated with invasive procedures [4]. Numerous clinical 
trials are evaluating various hydrogels’ safety, effectiveness, 
and stability for clinical use [85]. Additionally, implantable 
systems and nano-formulations show promise in ongoing 
studies. However, while preclinical research has progressed 
signiϐicantly, few ophthalmic drug delivery systems have 
transitioned to the clinical market.

Notably, Retisert and Ozurdex are FDA-approved 

intravitreal implants for treating uveitis, AMD, and macular 
edema. Retisert, containing ϐluocinolone acetonide, provides 
corticosteroid therapy for approximately 2.5 years in the 
affected eye’s posterior segment [86]. Ozurdex employs a 
biodegradable hydrogel to release dexamethasone gradually, 
reducing inϐlammation and suppressing immune responses 
[87].

Translating these delivery systems to clinical use faces 
challenges like enhancing therapeutic agent bioavailability, 
extending drug release duration, precise tissue targeting, 
adapting to varying eye conditions, improving drug 
stability, minimizing inϐlammation and irritation, designing 
user-friendly systems, curbing infection risks, exploring 
combination therapies, and focusing on personalized medicine. 
Regulatory approvals are vital to ensure widespread adoption 
of these innovative systems.

With continuous advancements in these domains, gel-
based drug delivery systems can substantially enhance patient 
quality of life and revolutionize eye treatment standards. 
The future of ocular therapies for posterior eye diseases 
appears promising with the development of compound 
or hybrid nano-systems like nanoparticles and hydrogels, 
liposomes and dendrimers, stimuli-activated nano-systems, 
and nanocarriers combined with implants. The evolution of 
gel-based drug delivery systems presents exciting prospects 
in ophthalmology, offering long-term drug release, speciϐic 
targeting, and improved patient adherence for various eye 
conditions. Ongoing research to reϐine these formulations will 
likely establish gel-based systems as key players in the future 
of eye care.

Conclusion
The data for this study were meticulously gathered 

through an exhaustive review of existing literature, research 

Table 2: The latest research on hydride hydrogels.
Delivery System Route of Administration Advantages Limitations Cargo Ref

Microsphere-Hydrogel Intravitreal injection Single injection No information on drug distribution 
and in vivo half-life Afl ibercept [74]

Chitosan grafted hydrogel Intravitreal injection Entrapment of small molecules, 
sustained release 1 month Challenges in injection Sunitinib [75]

Supramolecular nanofi ber hydrogel Intravitreal injection Long-term sustained release Not specifi ed Betamethasone phosphate [76]

3D-printed PHEMA hydrogel Contact lens Non-invasive Limited bioavailability and 
Short-term effi  cacy Avastin [77]

Hydroxyethyl methacrylate and 
chitosan Contact lens Non-invasive Not specifi ed Ocular drugs [78]

Hydrogel-coated PLGA-Dotap 
nanoparticles Intravitreal injection Controlled delivery, increased 

therapeutic effi  cacy
Limited loading capacity, challenges 

in injection Nanoparticle [79]

hydrogel combining chitosan 
nanoparticles Intravitreal injection Avoided the initial burst release Challenges in injection dexamethasone/Avastin [80]

Peptide nanofi ber hydrogel Intravitreal injection Sustainable release patterns 
without any dose dumping Not specifi ed Ranibizumab [81]

Liposome-loaded hydrogel Sub-tenon administration High antiangiogenic properties, 
increased drug residency

Limited drug loading capacity and 
Short-term effi  cacy (up to 21 days) Sunitinib, acrifl avine [82]

Peptide hydrogels Intravitreal injection Immediate improvement in 
reducing vascular leak Limited follow-up time (14 days) 

Pro-angiogenic and 
anti-angiogenic peptide [83]

Peptide hydrogels Intravitreal injection Controlled drug release Low bioavailability Conbercept [84]
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papers, and studies focused on hydrogel-based formulations 
for drug delivery to the posterior segment of the eye in the 
ϐield of ophthalmology. Multiple reputable sources, including 
peer-reviewed journals, academic publications, conference 
proceedings, and respected online references, were consulted 
to compile pertinent data and gain comprehensive insights 
into the various applications and implications of hydrogel-
based drug delivery in ocular health. In the beginning 
sections of this paper, we have evaluated the most routine 
and available methods to deliver drugs and biomolecules to 
the posterior segment of the eye. Also, we have assessed the 
post-segment action mechanisms, barriers, and limitations 
that are restricting drug delivery to this area. Clearly, we 
have concluded that hydrogel is an alternative to overcome 
barriers and effective drug delivery to deliver drug, gene, 
and macro/micro molecules to this impassable area. 
Afterward, we compared the pros and cons of hydrogel with 
other carriers and delivery methods. We have mentioned 
many successful studies and these studies conspicuously 
afϐirmed that hydrogels provided the delivery with higher 
drug availability, least invasive or non-invasive entrance, 
and better transmission through eye barriers. Emphasis was 
placed on selecting studies that presented diverse examples 
showcasing the applications of hydrogel-based drug delivery 
in addressing various aspects of ocular health. This rigorous 
methodology ensures the credibility and reliability of the data 
presented in this article.
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