The Trans-zoonotic Virome interface: Measures to balance, control and treat epidemics
Main Article Content
Abstract
The global virome: The viruses have a global distribution, phylogenetic diversity and host specificity. They are obligate intracellular parasites with single- or double-stranded DNA or RNA genomes, and afflict bacteria, plants, animals and human population. The viral infection begins when surface proteins bind to receptor proteins on the host cell surface, followed by internalisation, replication and lysis. Further, trans-species interactions of viruses with bacteria, small eukaryotes and host are associated with various zoonotic viral diseases and disease progression.
Article Details
Copyright (c) 2020 Nikhra V.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, et al. Uncovering Earth's virome. Nature. 2016; 536: 425–430. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27533034
Edwards RA, Rohwer F. Viral metagenomics. Nature Rev Microbiol. 2005; 3: 504-510. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15886693
Colson P, Richet H, Desnues C, Balique F, Moal V, et al. Pepper Mild Mottle Virus, a Plant Virus Associated with Specific Immune Responses, Fever, Abdominal Pains, and Pruritus in Humans. PLoS ONE. 2010; 5: e10041. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20386604
Zhang T, Breitbart M, Lee WH, Run JQ, Wei CL, et al. RNA viral community in human faeces: prevalence of plant pathogenic viruses. PLoS Biol. 2006; 4: e3. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16336043
Mackenzie JS, Jeggo M. Reservoirs and vectors of emerging viruses. Curr Opin Virol. 2013; 3: 170-179. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23491947
Carrol D, Watson B, Togami E, Daszak P, Mazet JA, et al. Building a global atlas of zoonotic viruses. Bull World Health. 2018; 96: 292–294. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29695886
Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, et al. Host and viral traits predict zoonotic spill-over from mammals. Nature. 2017; 546: 646-650. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28636590
Morse SS, Mazet JA, Woolhouse M, Parrish CR, Carroll D, et al. Prediction and prevention of the next pandemic zoonosis. Lancet. 2012; 380: 1956-1965. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23200504
Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012; 380: 2095–2128. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23245604
Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, et al. Global trends in emerging infectious diseases. Nature. 2008; 451: 990-993. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18288193
Fauci AS, Morens DM. The perpetual challenge of infectious diseases. N Engl J Med. 2012; 366: 454–461. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22296079
Bolles M, Donaldson E, Baric R. SARS-CoV and emergent coronaviruses: Viral determinants of interspecies transmission. Curr Opin Virol. 2011; 1: 624–634. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22180768
Graham RL, Baric RS. Recombination, reservoirs, and the modular spike: Mechanisms of coronavirus cross-species transmission. J Virol. 2010; 84: 3134–3146. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19906932
Graham RL, Donaldson EF, Baric RS. A decade after SARS: Strategies for controlling emerging coronaviruses. Nature Rev Microbiol. 2013; 11: 836-848. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24217413
Li F. Receptor recognition and cross-species infections of SARS coronavirus. Antiviral Res. 2013; 100: 246–254. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23994189
Johnson CK, Hitchens PL, Evans TS, Goldstein T, Thomas K, et al. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci Rep. 2015; 5: 14830. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26445169
McCarty MF, DiNicolantonio JJ. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus. Prog Cardiovasc Dis. 2020. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32061635
Brayden Humpherys B, Busath DD. Anti-Influenza Nutraceuticals: Antiviral and Anti-Inflammatory Effects. Advances in Complementary & Alternative medicine. 2019; 4.
To EE, Luong R, Diao J, O' Leary JJ, Brooks DA, et al. Novel endosomal NOX2 oxidase inhibitor ameliorates pandemic influenza A virus‐induced lung inflammation in mice. Respirology. 2019; 24: 1011–1017. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30884042
Vetvicka V, Vetvickova J. Glucan supplementation enhances the immune response against an influenza challenge in mice. Ann Transl Med. 2015; 3: 22. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25738142
Hawkins J, Baker C, Cherry L, Dunne E. Black elderberry (Sambucus nigra) supplementation effectively treats upper respiratory symptoms: a meta-analysis of randomized, controlled clinical trials. Complement Ther Med. 2019; 42; 361-365. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30670267
Li N, Ma W-T, Pang M, Fan QL, Hua JL. The Commensal Microbiota and Viral Infection: A Comprehensive Review. Front Immunol. 2019; 10: 1551.PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31333675 .
Lehtoranta L, Pitkäranta A, Korpela R. Probiotics in respiratory virus infections. Eur J Clin Microbiol Infect Dis. 2014; 33: 1289-1302. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24638909
O’Toole PW, Marchesi JR, Hill C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol. 2017; 2: 17057. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28440276
Maeda N, Nakamura R, Hirose Y, Murosaki S, Yamamoto Y, et al. Oral administration of heat-killed lactobacillus plantarum l-137 enhances protection against influenza virus infection by stimulation of type I interferon production in mice. Int Immunopharmacol. 2009; 9; 11-22. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19410659
Yang Y, Song H, Wang L, Palissa C, Esch B, et al. Antiviral Effects of a Probiotic Metabolic Products against Transmissible Gastroenteritis Coronavirus. Arch Virol. 2013; 158: 799-807. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23188495
Harata G, He F, Hiruta N, Kawase M, Kubota A, et al. Intranasal administration of Lactobacillus rhamnosus GG protects mice from H1N1 influenza virus infection by regulating respiratory immune responses. Lett Appl Microbiol, 2010; 50; 597–602. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20438620
Horie A, Tomita Y, Ohshio K, Fujiwara D, Fujii T. Characterization of genomic DNA of lactic acid bacteria for activation of plasmacytoid dendritic cells. BMC Microbiol. 2019; 19: 88. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31060586
Kumar R, Seo BJ, Mun MR, Kim CJ, Lee I, et al. Putative probiotic lactobacillus spp. from porcine gastrointestinal tract inhibit transmissible gastroenteritis coronavirus and enteric bacterial pathogens. Trop Anim Health Prod. 2010; 42: 1855-1860. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20623187
Chai W, Burwinkel M, Wang Z, Palissa C, Esch B, et al. Antiviral effects of a probiotic enterococcus faecium, strain against transmissible gastroenteritis coronavirus. ArchVirol. 2013; 158: 799-807. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23188495
Lu W, Feng Y, Jing F, Han Y, Lyu N, et al. Association between gut microbiota and CD4 recovery in HIV-1 infected patients. Front Microbiol. 2018; 9: 1451. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30034377
Razonable RR. Antiviral Drugs for Viruses Other Than Human Immunodeficiency Virus. Mayo Clin Proc. 2011; 86: 1009–1026. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21964179
Lin GL, McGinley JP, Drysdale SB, Pollard AJ. Epidemiology and Immune Pathogenesis of Viral Sepsis. Front Immunol. 2018; 9: 2147. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30319615
Influenza (Flu) Antiviral Drugs and Related Information.